If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10r^2+31r-14=0
a = 10; b = 31; c = -14;
Δ = b2-4ac
Δ = 312-4·10·(-14)
Δ = 1521
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1521}=39$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(31)-39}{2*10}=\frac{-70}{20} =-3+1/2 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(31)+39}{2*10}=\frac{8}{20} =2/5 $
| 2v-(-8v+1)=-81 | | (x-8)(x-4)+3=0 | | 3/10x=-18/10 | | 0.37x+9=6-0.8x | | 8b+3b=-11 | | -220=6(6m-8)+8 | | 5x-7=11x-9 | | (8x+18=90) | | p+0.09p=130.8 | | 10x2-x=0 | | -3(4x-4)-12=-3(9x+3)-5 | | -6(b-5)-6=6b | | 5/6k+2/3=81 | | 5(x-1)+8=3x+11 | | x+(2x)+(x+3)=75 | | 0.05s+0.05(s+260)=60 | | 1/3s+1/3+2s+4/3=5s-1 | | 1/3s+1/3=2s+4/3 | | 4(x+6)/3=2x | | 8x-3=3(x-1) | | x^2+90x=900 | | 15=2+4d | | 63=7(n+5) | | 5(x+4)/4=4x | | 2(2x+1)=4x-2 | | -6=-2(r+6) | | 3x+1+5x=22+7x | | -5(-7x-5)=304 | | 2x+18°+x=90 | | 4/5x-6=x+2 | | 6(x-6)+28=8x-(2x+3)-5 | | (n+2)(n+3)=20 |